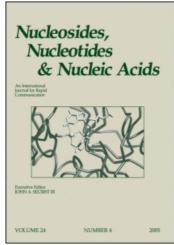
This article was downloaded by:


On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK



# Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

## Synthesis and Properties of Oligonucleotide (2-Aminoethyl)Phosphonates

Alan F. Cook<sup>a</sup>; Reza Fathi<sup>a</sup>; Qing Huang<sup>a</sup>; George Coppola<sup>a</sup>; William Delaney<sup>a</sup>; Jia-Lin Syi<sup>a</sup> <sup>a</sup> PharmaGenics, Inc., 4 Pearl Court, Allendale, New Jersey, USA

To cite this Article Cook, Alan F. , Fathi, Reza , Huang, Qing , Coppola, George , Delaney, William and Syi, Jia-Lin(1995) 'Synthesis and Properties of Oligonucleotide (2-Aminoethyl)Phosphonates', Nucleosides, Nucleotides and Nucleic Acids,  $14:3,\,1005-1008$ 

To link to this Article: DOI: 10.1080/15257779508012521 URL: http://dx.doi.org/10.1080/15257779508012521

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

# SYNTHESIS AND PROPERTIES OF OLIGONUCLEOTIDE (2-AMINOETHYL)PHOSPHONATES

Alan F. Cook\*, Reza Fathi, Qing Huang, George Coppola, William Delaney, and Jia-Lin Syi

PharmaGenics, Inc., 4 Pearl Court, Allendale New Jersey, USA 07401

#### **ABSTRACT**

Oligonucleotides with novel, cationic backbone substituents have been prepared. Dinucleotide aminoethylphosphonates have been synthesized and the isomers were separated and used to prepare oligonucleotides with alternating positive and negative charges. The properties of these oligonucleotides have been examined.

Although a large number of modifications to the phosphodiester backbone of oligonucleotides have been reported in the search for analogs with improved properties<sup>1</sup>, most modifications have been either neutral or negatively charged. In contrast, relatively few reports of oligonucleotides with cationic backbone substituents have been described<sup>2-4</sup>. In this study we have developed methods for the synthesis of oligonucleotides with cationic (2-aminoethyl)phosphonate backbone groups, and the chemical, biophysical and biological properties of analogs of this type have been determined.

Oligonucleotide synthesis. Phthalimido or halogenated phthalimido derivatives of (2-aminoethyl)phosphonic acid were prepared and condensed with 5'-dimethoxytrityl-thymidine to give the protected mononucleotides 1a-c (Figure 1). These monomers were coupled with thymidine to produce the dimers 2a-c as mixtures of isomers which could be separated by column chromatography. The stereochemical assignments for the dimers were made primarily on the basis of 2D NMR experiments. Studies on the deprotection of

1006 COOK ET AL.

the phthalimido substituents showed that removal of the unsubstituted phthalimido group from 2a required relatively harsh conditions, whereas the tetrahalophthalimido groups could be cleanly removed from either 2b and 2c using ethylenediamine. The tetrachlorophthalimido group was subsequently selected as the protecting group of choice for oligonucleotide synthesis. The dimer 2c was converted to its phosphoramidite derivative 3 and the latter was coupled in a DNA synthesizer to produce single isomer, net neutral, alternating backbone, T<sub>13</sub> oligonucleotides of structure 4.

Hybridization properties. The hybridization properties of the single isomer, alternating backbone oligonucleotides were compared with

TABLE 1

HYBRIDIZATION OF ALTERNATING BACKBONE T<sub>13</sub> OLIGONUCLEOTIDES TO DNA AND RNA

| BACKBONE TYPE                                                        |        | MELTING TEMP (°C) |             |
|----------------------------------------------------------------------|--------|-------------------|-------------|
|                                                                      | ISOMER | DNA TARGETA       | RNA TARGETA |
| P-O-                                                                 | -      | 35                | 29.5        |
| P-CH <sub>2</sub> NH <sub>3</sub> +/P-O <sup>-</sup>                 | Sp     | <10               | -           |
| P-CH <sub>2</sub> CH <sub>2</sub> NH <sub>3</sub> +/P-O <sup>-</sup> | Sp     | 12                | -           |
| P-CH <sub>2</sub> NH <sub>3</sub> +/P-O <sup>-</sup>                 | Rp     | 45                | 34          |
| P-CH <sub>2</sub> CH <sub>2</sub> NH <sub>3</sub> +/P-O <sup>-</sup> | Rp     | 51                | 34.5        |
| P-CH <sub>3</sub> /P-O <sup>-</sup>                                  | MIXED  | 32                | 32          |
| P-S <sup>-</sup> /P-O <sup>-</sup>                                   | MIXED  | 27                | 27          |

aDNA: d-A(pA)<sub>12</sub>, RNA: r-A(pA)<sub>12</sub>, in 160 mM salt.

phosphodiester controls and with the corresponding aminomethyl derivatives<sup>5</sup> (Table 1).

One of these single isomer, net neutral oligonucleotides (4, Rp isomer) formed more stable hybrids with either DNA or RNA targets than their corresponding natural counterparts, whereas the other (Sp) isomer did not form stable hybrids. Interestingly, the duplex of 4 (Rp isomer) with its DNA complement displayed a higher dissociation temperature than the corresponding aminomethyl derivative, even though the former possessed more steric bulk. The effect of salt concentration on dissociation temperature was less marked than for the natural duplex, which is to be expected for hybrids in which the charge-charge repulsions are reduced. Dissociation temperatures were strongly pH-dependent, with the more stable hybrids being formed under conditions which favored protonation of the aminoalkyl groups.

**Hydrolytic stability.** Since previous work had demonstrated that oligonucleotide (aminomethyl)phosphonates were hydrolyzed in aqueous solution<sup>5</sup>, it was of interest to examine the hydrolytic stability of the aminoethyl

1008 COOK ET AL.

series. A dinucleotide (aminomethyl)phosphonate in aqueous solution at  $37^{\circ}$  at pH 7 was hydrolyzed with a  $t_{1/2}$  of 45 hours, whereas the corresponding (2-aminoethyl)phosphonate was much more stable with a  $t_{1/2}$  of more than 30 days. This difference in stability might be caused by a reduction in the electropositivity of the phosphorus atom due to the additional intervening methylene group.

**Biological studies.** Oligonucleotides **4** (Rp and Sp isomers) were virtually undegraded after digestion for 24 h with S1 nuclease, whereas a natural sequence was rapidly degraded ( $t_{1/2} = 4$  min) under the same conditions. Oligomer **4** (Rp isomer) did not induce RNase-H-mediated cleavage of a complementary RNA strand under conditions which were suitable for the cleavage of a natural duplex. Stability in serum-containing media was evaluated for an alternating backbone sequence possessing a  $^{32}$ P label at the 5'-position; minimal degradation was observed over 24 hours.

### REFERENCES

- 1. Uhlmann, E.; Peyman, A. Chem. Rev. (1990) 90, 543-584.
- Letsinger, R. L.; Singman, C. N.; Histand, G.; Salunkhe, M. J. Amer. Chem. Soc. (1988) 110, 4470-4471.
- 3. Froehler, B. C. Tetrahedron Lett.. (1986) 27, 5575-5578.
- 4. Jung, P. M.; Histand, G.; Letsinger, R. L. *Nucleosides & Nucleotides* (1994) **13**, 1597-1604.
- Fathi, R.; Huang, Q.; Syi, J.-L.; Delaney, W.; Cook, A. F. Bioconjugate Chem. (1994) 5, 47-57.